IND Worksheet
revised April 18, 2006

Your Name: __________________________________ Signature:________________________________

Lab partner(s): __________________________________ __

Course & Section: ___________________________ Station # ____________ Date: ________________

1. For section D.2.2, with the rectangular coil:

 Record the largest (positive or negative) induced EMF you found for:

 i. motion of the coil outside the magnet, about 40 cm away: ____________
 ii. motion over the magnet with coil ends kept from crossing the boundary: _______
 iii. 40 cm-to-center motion: _______ ; center-to-40 cm: __________

 Explain why the sign of the EMF changed between these two directions.

 Record the values of the integrals for each part of the motion (Don’t forget units.):
 40 cm-to-center motion: ____________ ; center-to-40 cm: __________

 Explain why these two integrals should be equal in magnitude and opposite in sign.

 Remember to attach a copy of your LoggerPro scan for measurement iv.

 iv. Record the maximum magnitude of the EMF for your two other speeds:

 Motion 40 cm to center: slower: _____________ faster: _____________
 motion center to 40 cm: slower: _____________ faster: _____________

 Explain why the magnitude changed with speed.

 Record the value of the integral of the EMF for

 fast motion: __________ slow motion: __________

 Are the integrals for the two different speeds the same? Should they be? Explain why or why not.

 v. Record the values of the integrals for:
moving the coil onto the magnet: _______ lifting it up and back: ________

Are these values equal but opposite? Is this behavior expected? Explain why or why not.

2. **For section D.3 with rotating coils:** *(Attach a copy of the printout as requested.)*
 Record the values of the integrated areas for the 90º flips. *(average of two values)*
 Fast: _______________ Slow: _______________
 Record the average time integral for your four 180º flips. ________________
 Determine the strength of the magnet from these flips. __________

3. **Section D.4 - Coupled Circuits**
 Explain the shape of the induced waveform in relation to the input waveform.

 What are the EMFs for the various coils at 20 Hz?
 16 turn: __________ 160 turn __________ 1600 turn __________
 Compare this behavior to theory.

GRADE: _______ **GRADED BY:** _______
(out of 30 points) (TA’s initials)